Dynamics of transposable elements in the 16 Gb hexaploid wheat genome

Frédéric Choulet
GDEC, INRA, UCA, Clermont-Ferrand, France

SCIENCE \& IMPACT

- Triticum
- Aegilops
bread wheat (AA-BB-DD)
(Triticum aestivum)

Complex genome

- 16 Gb
- Hexaploid AA-BB-DD
- 85\% TEs

Launched in 2005
-> Produce a high quality genome sequence of hexaploid wheat

August $17^{\text {th }} 2018$

RESEARCH

RESEARCH ARTICLE SUMMARY

wheat genome

Shifting the limits in wheat research and breeding using a fully annotated

as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. TO molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out deliver a high-quality annotated reference genome sequence of bread wheat
RESULTS: An annotated reference sequence
representing the hexaploid bread wheat ge

refe genome

INTRODUCTION: Wheat (Triticum aestivum L) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat omy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapt-
ing the crop to regionally specific biotic and abiotic stresses.

RATIONALE: Breeding efforts are limited by
insufficient knowledge and understanding of

Wheat genome deciphered, assembled, and ordered. Seeds, or grains, respect to wheatyiless (lett panel), but all parts of the plant contribute to sequences, and the interaction network of expressed genes-all shown her panel) with concentric tracks for diverse aspects of wheat genome compos researchers now have the ability to rewnite the story of wheat crop improve ranges underlying the concentric heatmaps of the right panel are provided

Wicker et al. Genome Biology (2018) 19:103
https://doi.org/10.1186/s1359-018-1479-0
Genome Biology

RESEARCH

Open Access
Impact of transposable elements on genome structure and evolution in bread wheat

Thomas Wicker ${ }^{1 \dagger}$, Heidrun Gundlach ${ }^{2 \dagger}$, Manuel Spannagl ${ }^{2}$, Cristobal Uauy ${ }^{3}$, Philippa Borrill ${ }^{3}$ Ricardo H. Ramírez-González ${ }^{3}$, Romain De Oliveira ${ }^{4}$, International Wheat Genome Sequencing Consortium ${ }^{5}$, Klaus F. X. Mayer ${ }^{2,6}$, Etienne Paux ${ }^{4}$ and Frédéric Choulet ${ }^{4^{*}}$ ©

Abstract

Background: Transposable elements (TES) are major components of large plant genomes and main drivers of genome evolution. The most recent assembly of hexaploid bread wheat recovered the highly repetitive TE space an almost complete chromosomal context and enabled a detailed view into the dynamics of TEs in the A, B, and D an almost con
subgenomes.
Results: The overall TE content is very similar between the A, B, and D subgenomes, although we find no evidence for bursts of TE amplification after the polyploidization events. Despite the near-complete turnover of TES since the subgenome lineages diverged from a common ancestor, 76% of TE families are still present in similar proportions in each subgenome. Moreover, spacing between syntenic genes is also conserved, even though syntenic TEs have been replaced by new insertions over time, suggesting that distances between genes, but not sequences, are under evolutionary constraints. The TE composition of the immediate gene vicinity differs from the core intergenic regions. We find the same TE families to be enriched or depleted near genes in all three subgenomes. Evaluations at the subfamily level of timed long terminal repeat-retrotransposon insertions highlight the independent evolution of the diploid A, B, and D lineages before polyploidization and cases of concerted proliferation in the $A B$ tetraploid. Conclusions: Even though the intergenic space is changed by the TE turnover, an unexpected preservation is observed between the A, B, and subgenomes for features like TE famly proportions, gene spacing, and TE enrichment near genes. Keywords: Transposable elements, Wheat genome, Genome evolution, LTR retrotransposons, Polyploidy, Triticum aestivum

Background

Transposable elements (TEs) are ubiquitous components of genomes and one of the major forces driving genome evolution [1]. They are classified into two classes: retroransposons (class 1), transposing via reverse transcription of their messenger RNA (mRNA), and DNA transposons (lass 2), representing all other types of elements [2]. TEs e small genetic units with the ability to make copies of
 encode a function that would allow them to be maintained by selection across generations; rather, their strategy relies

BMC
©The Author(s).2018 Open Access This aricle is distribured under the terms of the Creative Commons Atribution 40

- IWGSC sequencing strategy

2015 .. 2018

- IWGSC RefSeq v1.0 - Metrics

total size 14.5 Gb (21 pseudomolecules $=14.1 \mathrm{~Gb}$) completeness 97-99\% superscaffold N50 23 Mb

○ IWGSC RefSeq v1.0

- Annotation
- 107,891 genes
- 4 million TEs

The "1/3-1/3-1/3" mystery!!!

- TE modeling based on similarity with a TE library
- Building a reference TE library:
- fully de novo
- curated by experts

105 TE fragments (RepeatMasker with TREP)

Dotter for manual curation

TG..CA

> Manual curation:

Absolutely necessary to have a high quality TE library

- TE modeling with CLARI-TE and ClariTeRep

- TE modeling with CLARI-TE and ClariTeRep

> High level of synteny between A-B-D (gene-based)

> Near-complete TE turnover since A-B-D divergence

口П
III
－I
III
III
$[1 I$

08
010
0
0
0
D 肠非

＊

○ \% TEs

Superfamilies

> Proportion of each superfamily is very similar betw A-B-D

Families

> Abundant families are the same on A-B-D
$>\mathbf{0}$ family specific to 1 subgenome
> 76\% of the fam. account for similar \% on A-B-D (<2 fold-change)

- TE trees

> Independent TE evolution in the diploids $A A, B B, D D$
$>$ Some rare cases of TE amplif in the tetraploid AABB

- TE dynamics

- TE fam conserved betw A-B-D
\rightarrow ancestrally present
- TE turnover BUT proportions remained similar
\rightarrow most families were active
\rightarrow "equilibrium" between deletion / amplification
- Hypothesis:

Structural role of TEs likely under selection pressure?
\rightarrow Intergenic distances tend to be conserved!!! ... genome architecture likely under evolutionary constraints

A-B-D last
common ancestor

- TE content around genes

> Wide majority of TE families either enriched/underrepres. in gene promoters
> Enrichment/Underrepres. close to genes is conserved betw A-B-D

- Conclusions
- Nearly-complete TE turnover since A-B-D divergence
- Stability+++ (TE \%, families, enrichment around genes...)
=> Hypothesis of a structural role of TEs likely under selection pressure

Cereba Quinta

Li et al. Plant Journal 2012
\rightarrow Structural role of TEs $=$ CenH3-binding site

[Acknowledgments

- University of Zurich

Thomas Wicker

- PGSB, Munich

Heidrun Gundlach
Manuel Spannagl
Klaus Mayer

- John Innes Center, Norwich

Cristobal Uauy
Philippa Borrill
Ricardo Ramírez-González

- GDEC, INRA, UCA, Clermont-Fd

Romain De Oliveira
Hélène Rimbert
Philippe Leroy
Nicolas Guilhot
Josquin Daron
Ambre A. Josselin
Etienne Paux

- IWGSC RefSeq
R. Appels, K. Eversole,
J. Rogers, N. Stein
~200 contributors

IWGSC RefSeq

